香港城市大学吕坚院士研究组实现了4D增减材复合制造形状记忆陶瓷。2023年7月30日,相关研究工作以“4D additive–subtractive manufacturing of shape memory ceramics”为题发表在国际著名期刊AdvancedMaterials上。该论文的第一作者是香港城市大学刘果博士,通讯作者是吕坚院士。 由于陶瓷有熔点高的特性,因此难以用传统的激光打印方法来制造陶瓷。而现在用3D打印的陶瓷前驱体通常难以变形,因此阻碍了一些形状复杂陶瓷的生产。 陶瓷等高温结构材料的发展因其极高的熔点和构建复杂结构的难度而受到限制。弹性体衍生陶瓷的四维 (4D) 打印在陶瓷的几何灵活性上取得突破。然而,陶瓷 4D 打印系统的应用受限于耗时繁琐的形状转变(变形)和材料转变(变质)独立分步的工艺过程、低精度的4D变形机制/3D结构特征/2D表面质量、及低热性能的SiOC基陶瓷。 此外,现有4D打印技术制备的陶瓷材料的形状不能发生变化,而现有形状记忆陶瓷的研究受限于低材料普适性、低几何灵活性、小结构尺寸、及低形状记忆功能灵活性。 为了解决上述诸多难题,该研究提出了4D增减材复合制造形状记忆陶瓷的新范式,该范式实现了一步式变形变质4D打印陶瓷,兼具高2D/3D/4D精度、高效率、及大尺寸;研发了具有初始/反向、整体/局部多模式形状记忆功能的宏观尺寸形状记忆陶瓷;提升了所打印复杂网格轻质结构SiOC基陶瓷材料的火焰烧蚀性能。该研究有望拓展高温结构材料在航空航天、3C电子、生物医疗、和艺术等领域的应用。 01【研究基础】 2018年,香港城市大学吕坚教授研究组全球首次实现了陶瓷的4D打印。研究组从材料出发,开发了不同系统的硅胶基质纳米复合弹性体材料作为陶瓷前驱体。这些弹性体材料的特性使其可以完成从3D打印到变形的过程,并且最终转变为陶瓷结构,从而逐步实现打印陶瓷折纸结构和4D打印陶瓷。该技术结合了3D打印,自变形组装,和弹性体衍生陶瓷(Elastomer-derived ceramics,EDCs),在大尺寸陶瓷结构的形状复杂程度,机械强度,制造成本,和适应复杂环境能力上实现了突破。 通过陶瓷折纸打印获得的结构(来源:Liu, Guo, et al.,《Origami and 4D printing of elastomer-derived ceramic structures》) 在陶瓷折纸打印技术基础上,研发团队将陶瓷折纸技术中手动的步骤进行数字化和自动化,进一步实现了陶瓷的4D 打印。这一过程可以通过多种方法实现。 第一种方法是通过拉伸机对前驱体进行拉伸,并在拉伸后的基底上打印连接点,再将另一个打印好的拓扑结构进行固定。当拉伸机解除作用于基底的应力后,拓扑结构发生屈曲变形,再由热处理后进而形成4D打印的陶瓷结构。 方法一(来源:Liu, Guo, et al.,《Origami and 4D printing of elastomer-derived ceramic structures》) 第二种方法是通过将陶瓷前驱体按照设计好的纹路打印在预拉伸的陶瓷前驱体上,在预应力被释放时,就会发生4D变形。通过设计在预拉伸表面打印的路径可以控制应力释放后的4D变形。文中以几个有代表性的拓扑结构作为例子,展示了弯曲,螺旋和马鞍面的打印过程。 方法二(来源:Liu, Guo, et al.,《Origami and 4D printing of elastomer-derived ceramic structures》)
该工作被欧盟委员会列为《面向未来的100项颠覆性技术创新》中4D打印案例之一,其中100项颠覆性技术绝大部分由欧美团队领先,该研究成果为4D打印技术入选的4个案例中唯一中国具有自主知识产权的工作(P. Warnke et al., 100 Radical Innovaation Breakthroughs for the future, 2019)。该工作获颁国家工业和信息化部的科学技术成果登记证书(登记号:3392019Y0014),其评价报告指出“该技术拥有自主知识产权,陶瓷‘4D’打印概念属国际首创,相关技术具有创新性和超前性,有重要的学术和技术价值”。该工作被《人民日报》(头版)、《参考消息》、New Scientist、美联社等国内外知名媒体广泛报道,入选“2019未来科技智能制造十大事件”。 研究亮点1:4D增减材复合制造陶瓷受中国传统陶艺启发,利用陶瓷前驱体材料的易加工性,集成了陶瓷4D打印系统与减材制造、异质工程、表面工程等技术,提出了4D增减材复合制造陶瓷的新概念。 突破了先前4D打印陶瓷技术的局限性,探究了基于非接触式激励的一步式变形变质4D打印陶瓷机制。